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Abstract: A commonly used semiparametric partial linear model is con-
sidered. We propose analyzing this model using a difference based approach.
The procedure estimates the linear component based on the differences of
the observations and then estimates the nonparametric component by ei-
ther a kernel or a wavelet thresholding method using the residuals of the
linear fit. It is shown that both the estimator of the linear component and
the estimator of the nonparametric component asymptotically perform as
well as if the other component were known. The estimator of the linear com-
ponent is asymptotically efficient and the estimator of the nonparametric
component is asymptotically rate optimal. A test for linear combinations of
the regression coefficients of the linear component is also developed. Both
the estimation and the testing procedures are easily implementable. Nu-
merical performance of the procedure is studied using both simulated and
real data. In particular, we demonstrate our method in an analysis of an
attitude data set.
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1. Introduction

Semiparametric models have received considerable attention in statistics and
econometrics. In these models, some of the relations are believed to be of certain
parametric form while others are not easily parameterized. In this paper, we
consider the following semiparametric partial linear model

Yi = a+X ′
iβ + f(Ui) + ǫi, i = 1, . . . , n, (1)

where Xi ∈ Rp, Ui ∈ R, β is an unknown vector of parameters, a is the un-
known intercept term, f(·) is an unknown function and ǫi’s are independent

∗Supported in part by NSF Grant DMS-1005539.
†Supported in part by NSF Grant DMS-0707033.
‡Supported in part by NSF FRG Grant DMS-0854973.

619

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/11-EJS621
mailto:liewang@math.mit.edu
mailto:lbrown@wharton.upenn.edu
mailto:tcai@wharton.upenn.edu


620 L. Wang et al.

and identically distributed random noise with mean 0 and variance σ2 and are
independent of (X ′

i, Ui).

Literature review

The semiparametric partial linear model has been extensively studied and sev-
eral approaches have been developed to construct the estimators. A penalized
least-squares method was used in for example [33, 13, 9]. A kernel smoothing
approach was introduced in [30]. A partial residual method was proposed for
example in [10]. And a profile likelihood approach was used in [29] and [6]. The
test of significance of partial linear model was discussed in [15, 23, 35]. Moreover,
the estimation of the nonparametric component is discussed in [7, 31, 17, 19].
The issue of achieving the information bound in this and other non- and semi-
parametric models has been examined by [26] and extensively discussed in [1].

In this article, a difference based estimation method is considered. The esti-
mation procedure is optimal in the sense that the estimator of the linear com-
ponent is asymptotically efficient, see for example [27], and the estimator of the
nonparametric component is asymptotically minimax rate optimal. [25] intro-
duced a first-order differencing estimator in a nonparametric regression model
for estimating the variance of the random errors. [18, 24] extended the idea to
higher-order differences for efficient estimation of the variance in such a setting.
[21] used differencing for testing between a parametric model and a nonpara-
metric alternative.

In particular, [34, 35] introduced the differencing method to semiparametric
regression with the focus on estimating the linear component. By using higher-
order differences [34, 35] showed that the bias induced from the presence of
the nonparametric component can be essentially eliminated. He constructed an
estimator of the linear component and showed it to be asymptotically efficient
under the condition that the nonparametric function f is fixed (for all n) and
has a bounded first derivative. See also [14, 22].

Main results

In this paper, instead of focusing on the linear component as in [34, 35], we
treat estimation of both the linear and the nonparametric components. We ex-
tend the results in [34, 35] to general smoothness classes for the nonparametric
component and the condition on nonparametric component is weakened. In ad-
dition, our results hold uniformly over such classes and so enable traditional
asymptotic minimax conclusions. They also show what minimal smoothness as-
sumptions are needed. Moreover, we consider the hypotheses testing problem of
the linear coefficients and an F statistics is constructed. We show that asymp-
totic power of the F test is the same as if the nonparametric component is
known. We also consider adaptive estimation of the nonparametric function f
using wavelet thresholding. It is interesting to note that although the differ-
ences are correlated the correlation should be ignored and the linear regression
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coefficient vector β should be estimated by the ordinary least squares estimator
instead of a generalized least squares estimator which takes into account the
correlations among the differences. If the correlation structure is incorporated
in the estimation, the resulting generalized least squares estimator will not be
optimal (in most cases, even not consistent).

Estimation procedure

The procedure begins by taking differences of the ordered observations (ordered
according to the values of Ui). Let dt, t = 1, 2, . . . ,m+1 be an order m difference
sequence that satisfies

∑
t dt = 0 and

∑
t d

2
t = 1. For i = 1, 2, . . . , n − m, let

Di =
∑m+1

t=1 dtYi+m+1−t. Then Di can be seen as the mth order difference of Yi.
The goal of this step is to eliminate the effect of the nonparametric component
f . Now the problem reduces to the standard multiple linear regression prob-
lem. We then estimate the linear regression coefficients β by the ordinary least
squares estimator based on the differences. Both the intercept a and unknown
function f can be estimated based on the residual of the linear fit under certain
identifiability assumptions.

We estimate the nonparametric function f by both kernel and wavelet thresh-
olding methods. The results show that under certain conditions both the linear
and nonparametric components are estimated as well as if the other component
were known. We also derive a test for linear combinations of the regression coef-
ficients of the linear component. The test is fully specified and the test statistic
is shown to asymptotically have the usual F distribution under the null hypoth-
esis.

Both the estimation and the testing procedures are easily implementable.
Numerical performance of the estimation procedure is studied using both sim-
ulated and real data. The simulation results are consistent with the theoretical
findings.

The paper is organized as follows. Section 2 considers the simpler case where
Xi does not depend on Ui to illustrate the whole procedure. In Section 3 treats
the general case where Ui are possibly correlated with the Xi and the main
results are given. The testing problem is considered in Section 4. A simulation
study is carried out in Section 5 to study the numerical performance of the
procedure. Real data applications are also discussed. The proofs are contained
in Section 6.

2. Independent case

In this section, we consider a simple version of the semiparametric partial linear
model (1) where Xi does not depend on Ui. In section 3 we will consider the
setting where Xi may depend on Ui. We shall always assume that Xi are ran-
dom vectors. For the nonparametric component Ui, either Ui = i/n or Ui are
i.i.d. random variables on [0, 1] and independent of Xi. In the second case, we
also assume the density function of Ui is bounded away from 0. Assumptions
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on the function f are needed to make the model identifiable. Here we assume∫ 1

0 f(u)du = 0 for the case where Ui = i/n; and assume E(f(Ui)) = 0 for the
case where Ui are random variables.

Let Xi = (Xi1, Xi2, . . . .Xip)′ be p−dimensional independent random vectors
with a non-singular covariance matrix ΣX . Define the Lipschitz ball Λα(M) in
the usual way:

Λα(M) = {g : for all 0 ≤ x, y ≤ 1, k = 0, . . . , ⌊α⌋ − 1,

|g(k)(x)| ≤M, and |g(⌊α⌋)(x) − g(⌊α⌋)(y)| ≤M |x− y|α′}

where ⌊α⌋ is the largest integer less than α and α′ = α−⌊α⌋. Suppose f ∈ Λα(M)
for some α > 0. Then the partial linear model (1) can be written as

Yi = a+X ′
iβ + f(Ui) + ǫi = a+Xi1β1 +Xi2β2 + · · · +Xipβp + f(Ui) + ǫi. (2)

Here we assume the error terms ǫi, i = 1, 2, . . . , n, are i.i.d. random variables
with finite variance σ2. The goal is to estimate the coefficient vector β, the
intercept a, and the unknown function f . This will be done through a difference
based estimation.

Suppose a difference sequence d1, d2, . . . , dm+1 satisfies
∑m+1

i=1 di = 0 and∑m+1
i=1 d2i = 1. Such a sequence is called an mth order difference sequence.

Moreover, for k = 1, 2, . . . ,m let ck =
∑m+1−k

i=1 didi+k. Suppose

m∑

k=1

c2k = O(m−1) as m→ ∞. (3)

One example of a sequence that satisfies these conditions is

d1 =

√
m

m+ 1
, d2 = d3 = · · · = dm+1 = −

√
1

m(m+ 1)
. (4)

Remark 1. The asymptotic results in the theorems to follow require that the
orderm→ ∞ and that (3) be satisfied. However, even the simple choice ofm = 2
seems to yield quite satisfactory performance as attested by the simulations in
Section 5.

Remark 2. The asymptotic results like those in Theorem 1-5 are valid when X
depends on n (say X = X(n)) under the condition that the multivariate sample
CDF of (X(n), U) converges to that which would occur as a limit in the setting
of (3). We omit the details.

Remark 3. The case where Ui is multi-dimensional is much more involved
than the one dimensional case since it is not easy to take difference. To use the
difference based method in a high dimensional space, we need to carefully define
the difference sequence {dt}, see for example [4] and the references therein about
the difference in high dimensional space. In this article, we only consider the
one dimensional case.
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We now consider the difference based estimator of β. LetDi =
∑m+1

t=1 dtYi+m+1−t,
for i = 1, 2, . . . , n−m− 1. Then

Di = Z ′
iβ + δi + wi, i = 1, 2, . . . , n−m− 1, (5)

where Zi =
∑m+1

t=1 dtXi+m+1−t, δi =
∑m+1

t=1 dtf(Ui+m+1−t), and wi =∑m+1
t=1 dtǫi+m+1−t. Written in matrix form, (5) becomes

D = Zβ + δ + w

where D = (D1, D2, . . . , Dn−m−1)
′, w = (w1, w2, . . . , wn−m−1)′ and Z is a ma-

trix whose ith row is given by Z ′
i. Let Ψ denote the (n−m− 1) × (n−m− 1)

covariance matrix of w given by

Ψi,j =





1 for i = j
c|i−j| for 1 ≤ |i− j| ≤ m
0 otherwise

. (6)

In (5), δi are the errors related to the nonparametric component f in (1) and
wi are the random errors which are correlated, and have the covariance matrix
Ψ = (Ψi,j) given by (6). For estimating the linear regression coefficient vector
β, we use

β̂ = (Z ′Z)−1Z ′D. (7)

Although not entirely intuitive, it is important in this step to ignore the corre-
lation among the wi and use the ordinary least squares estimate. If instead a
generalized least squares estimator is used, i.e. (Z ′Ψ−1Z)−1Z ′Ψ−1D, which in-
corporates the correlation structure, the optimality results in Theorem 1 below
and Theorem 5 in the next section will not generally be valid.

Theorem 1. Suppose α > 0, m → ∞, m/n → 0, and that condition (3) is

satisfied. Then the estimator β̂ given in (7) is asymptotically efficient, i.e.

√
n(β̂ − β)

L−→ N(0, σ2Σ−1
X ).

Remark 4. Using the generalized least squares method ( (Z ′Ψ−1Z)−1Z ′Ψ−1D)
on the differences is similar to applying the ordinary least squares regression of
Y on X in the original model (1). This would cause significant bias due to the
presence of f . See Section 5 for numerical comparison.

Remark 5. Our proof shows that
√
n(β̂ − β) ∼ N(0, σ2(1 + 2

∑m
k=1 c

2
k)Σ−1

X ).
This means condition (3) is necessary for this procedure to be asymptotically
optimal. The factor (1 + 2

∑m
k=1 c

2
k) describes the inefficiency that results from

choice of a particular m and corresponding {c1, . . . , cm}. It can perhaps best
be recorded on a scale of relative values for the resulting standard deviations:
rel.SD = (1 + 2

∑m
k=1 c

2
k)−1/2. See Table 1 for a few such values for {ck} as in

(4) and for the optimal {ck} of [18]. Note that even modest values of m yield
quite high relative standard deviations.
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Table 1

Values of relative standard deviation for various m and {ck}

m 1 2 4 8 16
{ck} from (4) .816 .885 .933 .963 .980
Optimal {ck} .816 .894 .943 .970 .985

Remark 6. A similar result has been derived in [34, 35] under stronger condi-
tions, where α ≥ 1.

A natural estimator of the intercept a is â = 1
n

∑n
i=1(Yi −X ′

iβ̂). Since a =
1
n

∑n
i=1(Yi −X ′

iβ) − 1
n

∑n
i=1 f(Ui), it follows that â− a = 1

n

∑n
i=1X

′
i(β − β̂) +

1
n

∑n
i=1 f(Ui).

It can be seen that when Ui = i
n , 1

n

∑n
i=1 f(Ui) = O(n−α). So when α > 1/2

this term is negligible as compared with 1
n

∑n
i=1X

′
i(β − β̂). Therefore when

α > 1/2 the asymptotic property of â is purely driven by
∑n

i=1X
′
i(β− β̂). Since

β̂ is an efficient estimator of β, â is also an efficient estimator of a. We thus have
the following result.

Theorem 2. When Ui = i/n and α > 1/2, â is an efficient estimator of a, i.e.

√
n(â− a)

L−→ N(0, σ2).

Remark 7. For the case where α ≤ 1/2 and the Ui are i.i.d. random variables,
it can be seen from the previous discussion that â is asymptotically normal, but
the asymptotic variance may depend on f and the distribution of Ui.

Once we have the estimator β̂ and â, they can be plugged back into the orig-
inal model (1) to remove the effect of the linear component. For i = 1, 2, . . . , n,
the residuals of the linear fit are

ri = Yi − â−X ′
iβ̂ = f(Ui) + a− â+X ′

i(β − β̂) + ǫi.

The nonparametric component f can then be estimated by the Gasser-Mueller
estimator based on ri. Let k(x) be a kernel function satisfying

∫
k(x)dx =

1 and has ⌊α⌋ vanishing moments. Take h = n−1/(1+2α) and let Ki,h(u) =
1
h

∫ (Ui+Ui+1)/2

(Ui+Ui−1)/2
k(uh )du for i = 1, 2, . . . , n. The estimator f̂ is then given by

f̂(u) =

n∑

i=1

Ki,h(u)ri =

n∑

i=1

Ki,h(u)(Yi − â−X ′
iβ̂). (8)

Theorem 3. For each α > 0, the estimator f̂ given in (8) satisfies

sup
f∈Λα(M)

E

[∫
(f̂(x) − f(x))2dx

]
≤ Cn−2α/(1+2α)

for some constant C > 0. Moreover, for any x0 ∈ (0, 1),

sup
f∈Λα(M)

E
[
(f̂(x0) − f(x0))2

]
≤ Cn−2α/(1+2α).
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Theorem 3 is a standard results. It shows that the estimator f̂ given in (8)
attains the optimal rate of convergence over the Lipschitz ball Λα(M) under
both the global and local losses for the semiparametric problem.

The kernel estimator constructed above enjoys desirable optimal rate prop-
erties. However, it relies on the assumption that the smoothness parameter α is
given which is unrealistic in practice. It is thus important to construct estima-
tors that automatically adapt to the smoothness of the unknown function f . We
shall now introduce a wavelet thresholding procedure for adaptive estimation of
the nonparametric component f .

Wavelet thresholding method

We work with an orthonormal wavelet basis generated by dilation and transla-
tion of a compactly supported mother wavelet ψ and a father wavelet φ with∫
φ = 1. A wavelet ψ is called r-regular if ψ has r vanishing moments and r

continuous derivatives.

For simplicity in exposition, in the present paper we use periodized wavelet
bases on [0, 1]. Let φpj,k(x) =

∑∞
l=−∞ φj,k(x − l), ψp

j,k(x) =
∑∞

l=−∞ ψj,k(x − l),

for t ∈ [0, 1]. where φj,k(x) = 2j/2φ(2jx − k) and ψj,k(x) = 2j/2ψ(2jx − k).
The collection {φpj0,k, k = 1, . . . , 2j0 ; ψp

j,k, j ≥ j0 ≥ 0, k = 1, . . . , 2j} is then

an orthonormal basis of L2[0, 1], provided the primary resolution level j0 is
large enough to ensure that the support of the scaling functions and wavelets
at level j0 is not the whole of [0, 1]. The superscript “p” will be suppressed from
the notation for convenience. An orthonormal wavelet basis has an associated
orthogonal Discrete Wavelet Transform (DWT) which transforms sampled data
into the wavelet coefficients. See [11, 32] for further details.

Wavelet thresholding methods have been well developed for nonparametric
function estimation. One of the best known wavelet thresholding procedures is
Donoho-Johnstone’s VisuShrink ([12]). We shall now develop a wavelet thresh-
olding procedure for the nonparametric component f in the semiparametric
model similar to the VisuShrink for nonparametric regression.

Estimation of nonparametric component

For simplicity, here we suppose n = 2J for some integer J . The procedure begins
by applying the discrete wavelet transformation to the residuals of the linear
fit, r = (r1, r2, . . . , rn). Let v = n− 1

2W · r be the empirical wavelet coefficients,
where W is the discrete wavelet transformation matrix. Then v can be written
as

v = (ṽj0,1, . . . , ṽj0,2j0 , vj0,1, . . . , vj0,2j0 , . . . , vJ−1,1, . . . , vJ−1,2J−1)′ (9)

where ṽj0,k are the gross structure terms at the lowest resolution level, and
vj,k (j = j0, . . . , J − 1, k = 1, . . . , 2j) are empirical wavelet coefficients at level
j which represent fine structure at scale 2j. For convenience, we use (j, k) to
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denote the number 2j +k. Then the empirical wavelet coefficients can be written
as

ṽj0,k = ξj0,k + τ̃j0,k + n− 1
2 z̃j0,k and vj,k = θj,k + τj,k + n− 1

2 zj,k.

where ξj0,k and θj,k are the wavelet coefficients of f , τj,k and τ̃j0,k denote com-

bination of approximation error and the transformed linear residuals n− 1
2W ·

(X(β− β̂) + a), and zj,k and z̃j0,k are the transformed noise, i.e. W · ǫ. Our goal
now is to estimate the wavelet coefficients ξj0,k and θj,k.

For any y and t ≥ 0, define the soft threshold function ηt(y) = sgn(y)(|y| −
t)+. Let J1 be the largest integer satisfying 2J1 ≤ J−32J , then the θj,k are
estimated by

θ̂j,k =

{
ηλ(vj,k) if j0 ≤ j ≤ J1
0 otherwise

(10)

where λ = σ
√

2 logn
n . The coefficients of the father wavelets φj0,k at the lowest

resolution level are estimated by the corresponding empirical coefficients, ξ̂j0,k =
ṽj0,k. Write the estimated wavelet coefficients as

v̂ = (ξ̂j0,1, . . . , ξ̂j0,2j0 , θ̂j0,1, . . . , θ̂j0,2j0 , . . . , θ̂J−1,1, . . . , θ̂J−1,2J−1)′.

The estimate of f at the equally spaced sample points Ui is then obtained
by applying the inverse discrete wavelet transform (IDWT) to the denoised

wavelet coefficients. That is, {f( i
n ) : i = 1, . . . , n} is estimated by f̂ = {f̂( i

n ) :

i = 1, . . . , n} with f̂ = n
1
2W−1 · v̂. The estimate of the whole function f is given

by

f̂(t) =
2j0∑

k=1

ξ̂j0,kφj0,k(t) +
J−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t).

We have the following theorem.

Theorem 4. Suppose the wavelet is r-regular and the moment generating func-
tion of ǫi exist in a neighborhood of the origin. Then for all 0 < α ≤ r the
wavelet thresholding estimator f̂ defined in (4) satisfies

sup
f∈Λα(M)

E

[∫
(f̂(x) − f(x))2dx

]
≤ C

(
n

logn

)−2α/(1+2α)

for some constant C > 0. Moreover, for any x0 ∈ (0, 1),

sup
f∈Λα(M)

E
[
(f̂(x0) − f(x0))2

]
≤ C

(
n

logn

)−2α/(1+2α)

.

Remark 8. Similar result for estimating the nonparametric component using
wavelet thresholding method has been derived in [17]. In [17] the linear com-
ponent and nonparametric component were estimated simultaneously but the
estimation of the linear coefficients did not achieve the asymptotic efficiency.
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Comparing the results in Theorem 4 with the minimax rate given in (3), the
estimator V̂ is adaptive to within a logarithmic factor of the minimax risk under
both the global and local losses. Furthermore, it is not difficult to show that the
extra logarithmic factor is necessary under the local loss. See, for example [2].

3. Dependence case

We now turn to the random design version of the partial linear model (1) where
both Xi and Ui are assumed to be random and need not be independent of
each other. Note that asymptotical efficiency in this setting has been discussed,
for example, in [27]. Again let Xi be p dimensional random vectors. Let Ui

be random variables on [0, 1] and suppose that (X ′
i, Ui), i = 1, . . . , n, are in-

dependent with an unknown joint density function g(x, u). Assume the ǫi are
independent of (X ′

i, Ui). Let h(U) = E(X |U) and S(U) = E(X ′X |U). Suppose
f(u) ∈ Λα(Mf), and h(u) ∈ Λγ(Mh) for some α > 0 and γ > 0. (When X is a
vector, we assume each coordinate of h(u) satisfies this Lipschitz property.) Sim-
ilar to the previous case, to make the model identifiable, assume E(f(Ui)) = 0.
Moreover, suppose the marginal density of U is bounded away from 0, i.e. there
exists a constant c > 0 such that

∫
g(x, u)dx ≥ c for any u ∈ [0, 1].

Suppose U(1) ≤ U(2) ≤ · · · ≤ U(n) are the order statistics of the Ui’s and
X(i) and Y(i) are the corresponding X and Y . Note that X(i)’s are not the order
statistics of Xi’s, but the X associated with U(i). Similar to the independent

case, we take the m-th order differences Di =
∑m+1

t=1 dtYi+m+1−t = Z ′
iβ +

δi + wi, where Zi =
∑m+1

t=1 dtX(i+t−1), δi =
∑m+1

t=1 dtf(U(i+t−1)), and wi =∑m+1
t=1 dtǫ(i+t−1). Again we estimate the linear regression coefficient vector β by

β̂ = (ZTZ)−1ZTD. (11)

Theorem 5. When α+ γ > 1/2 and S(u) > 0 for every u, the estimator β̂ is
asymptotically efficient, i.e.

√
n(β̂ − β)

L−→ N(0, σ2Σ−1
∗ ),

where Σ∗ = E[(X1 − E(X1|U1))(X1 − E(X1|U1))′].

Remark 9. We can see from this theorem that we do not always need α > 1/2
to ensure the asymptotic efficiency. We only need one of the two functions f(u)
and h(U) = E(X |U) to have minimal smoothness. Theorem 1 can be considered
to be a special case where γ is infinity.

Remark 10. [34] obtained similar results for the partial linear model (1) under
the conditions that both f and h have bounded first derivatives and hence satisfy
the conditions with α = 1 and γ = 1. In this case the condition α + γ > 1/2 of
Theorem 5 is obviously satisfied.

When α > 1/2 we can use the same procedure as in the previous section

to efficiently estimate the intercept a. i.e. â = 1
n

∑n
i=1(Yi − X ′

iβ̂). Also, the
asymptotic variance of â depends on the joint distribution of X and U .
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Once we have an estimate of β, we can then use the same procedure to
estimate f(u) as in the fixed design case. Similarly, the estimator also attains
the optimal rate of convergence over the Lipschitz ball Λα(M) under both the
global and local losses.

The proof of Theorem 5 is given in Section 6. The following lemma is one
of the main technical tools. It is useful in the development of the test given in
Section 4.

Lemma 1. Under the assumptions of Theorem 5, we have that as n goes to
infinity,

Z ′Z

n

D−→ Σ∗,
Z ′ΨZ

n

D−→
(

1 −
m∑

k=1

c2k

)
Σ∗, and

Z ′δδ′Z

n
= Op(n−2α) +Op(n1−2α−2γ)

where δ = (δ1, δ2, . . . , δn−m) is given by δi =
∑m+1

t=1 dtf(U(i+t−1)).

4. Testing the linear component

In this section, we consider the problem of testing the null hypothesis that the
linear regression coefficients satisfy certain linear constraints. That is, we wish
to test

H0 : Cβ = 0 against H1 : Cβ 6= 0,

where C is an r × p matrix with rank(C) = r. A special case is testing the
hypothesis H0 : βi1 = · · · = βir = 0. In this section, we shall assume the errors
ǫi are independent and identically distributed N(0, σ2) variables.

4.1. Fixed design or independent case

We divide the testing problem into two cases. We first consider the case where
Ui = i/n (fixed design) or the Ui’s are random but independent of the Xi’s. From

the previous sections, we know that asymptotically in this case the estimator β̂ of
the linear regression coefficient vector β satisfies

√
n(β̂−β) ∼ N(0, σ2Σ−1

X ). This

means asymptotically
√
n(Cβ̂ − Cβ) ∼ N(0, σ2CΣ−1

X C′). So our test statistic

will be based on n
σ2 β̂

′C′(CΣ−1
X C′)−1Cβ̂. Both the covariance matrix ΣX and

the error variance σ2 are unknown in general and thus need to be estimated.
It follows from Lemma 1 that Z ′Z/n

a.s.−→ ΣX in this case. If σ2 is given, the

test statistic 1
σ2 β̂

′C′(C(Z ′Z)−1C′)−1Cβ̂ has a limiting χ2 distribution with r
degrees of freedom.

To estimate the error variance σ2, set H = I − Z(Z ′Z)−1Z ′. We shall use

σ̂2 =
‖HD‖2

2

n−m−p to estimate σ2. Note that ‖HD‖22 = w′Hw + 2w′Hδ + δ′Hδ.

Suppose α > 1/2. Then it is easy to see that δ′Hδ
a.s.−→ 0 as n → ∞. Since

w′Hδ|δ ∼ N(0, 2σ2δ′Hδ), we know that w′Hδ
a.s.−→ 0. Here we also assume that
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the first term of the difference sequence satisfies that 1 − d21 = O(m−1) (the
sequence given in (4) satisfies this condition). It can be shown that σ−2w′Hw
is approximately distributed as chi-squared with n−m− p degrees of freedom.

Theorem 6. Suppose α > 1/2 and 1 − d21 = O(m−1). For testing H0 : Cβ = 0
against H1 : Cβ 6= 0, where C is an r × p matrix with rank(C) = r, the test
statistic

F =
β̂′C′(C(Z ′Z)−1C′)−1Cβ̂/r

σ̂2

asymptotically follows the F (r, n−m−p) distribution under the null hypothesis.
Moreover, the asymptotic power of this test (at local alternatives) is the same
as the usual F test when f is not present in the model (1).

Hence an approximate level α test of H0 : Cβ = 0 against H1 : Cβ 6= 0 is
to reject the null hypothesis H0 when the test statistic F ≥ Fr,n−m−p;α where
Fr,n−m−p;α is the α quantile of the F (r, n−m− p) distribution.

Remark 11. [35] considered the testing problem. A χ2 statistic was derived
under the condition that σ2 is known.

4.2. General random design case

We now turn to the test problem in the general random design case where Ui are
random and correlated with Xi. Again suppose that (X ′

i, Ui), i = 1, . . . , n, are
independent with an unknown joint density function g(x, u). We will show that
the same F test also works in this case. Notice that in this case, asymptotically

√
n(Cβ̂ − Cβ)

L−→ N(0, σ2CΣ−1
∗ C′),

where Σ∗ = E[(X1−E(X1|U1))(X1−E(X1|U1))′]. Lemma 1 shows that Z ′Z/n
converges to Σ∗. Based on this observation and the discussion given in Section
4.1, we have the following theorem.

Theorem 7. Suppose α > 1/2 and 1 − d21 = O(m−1). For testing H0 : Cβ = 0
against H1 : Cβ 6= 0, where C is an r × p matrix with rank(C) = r, the test
statistic

F =
β̂′C′(C(Z ′Z)−1C′)−1Cβ̂/r

σ̂2

asymptotically follows the F (r, n−m−p) distribution under the null hypothesis.

5. Numerical study

The difference based procedure for estimating the linear coefficients and the
unknown function introduced in the previous sections is easily implementable.
In this section we investigate the numerical performance of the estimator using
both simulations and analysis of real data.
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5.1. Simulation

We first study the effect of the unknown function f on the estimation accuracy of
the linear component and then investigate the effect of the order of the difference

sequence. In the first simulation study, we take n = 500, Ui
iid∼ Uniform(0, 1),

a = 0 and consider the following four different functions,

f1(x) =





3 − 30x for 0 ≤ x ≤ 0.1
20x− 1 for 0.1 ≤ x ≤ 0.25
4 + (1 − 4x)18/19 for 0.25 < x ≤ 0.725
2.2 + 10(x− 0.725) for 0.725 < x ≤ 0.89
3.85 − 85(x− 0.89)/11 for 0.89 < x ≤ 1

f2(x) = 1 + 4(e−550(x−0.2)2 + e−200(x−0.8)2 + e−950(x−0.8)2) and f3(x) =∑
hj(1 + |x−xj

wj
|)−4, where

(xj) = (0.10, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81),

(hj) = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2),

(wj) = (0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005).

And f4(x) =
√
x(1 − x) sin( 2.1π

x+0.05 ). The test functions f3 and f4 are the Bumps
and Doppler functions given in [12]. When we do simulation, we will normalize
these functions to make them have unit variance. We also consider the case
where f ≡ 0 for comparison. The errors ǫi are generated from the standard
normal distribution. For Xi and β, we consider two cases: Case (1). p = 1,
Xi ∼ N(4Ui, 1), β = 1; Case (2). p = 3, Xi ∼ N((Ui, 2Ui, 4U

2
i ), I3), β = (2, 2, 4)′

where I3 denotes the 3 × 3 identity matrix.
We first examine the effect of the unknown function f on the estimation of

the linear component. In this part, the difference sequence in equation (4) with

m = 2 is used. The mean squared errors (MSEs) of the estimator β̂ is calculated
over 200 simulation runs. We also consider the case where the presence of f
is completely ignored and we directly run least squares regression of Y on X
in model (1). The results are summarized in Table 2. The numbers insides the
parentheses are the MSEs of the estimate when the nonparametric component
is ignored. By comparing the MSEs in each row, it can be easily seen that we
can estimate the linear coefficients nearly as well as if f were known. On the
other hand, if f is simply ignored and β is estimated by applying the least
squares regression of Y on X directly, the estimator is highly inaccurate. The

Table 2

The MSEs of estimate β̂ over 200 replications with sample size n = 500. The numbers

insides the parentheses are the MSEs of the estimate when the nonparametric component is

ignored

f ≡ 0 f1 (ignored) f2 (ignored) f3 (ignored) f4 (ignored)
Case (1) 0.0028 0.0028 (1.970) 0.0028 (0.054) 0.0034 (0.013) 0.0033 (0.011)
Case (2) 0.0027 0.0023 (0.705) 0.0023 (0.025) 0.0037 (0.009) 0.0032 (0.007)
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Table 3

The MSEs of the estimate f̂ over 200 replications with sample size n = 500

f ≡ 0 f1 f2 f3 f4
β = 0 0.02778 0.09201 0.22323 0.76808 0.35976

Case (1) 0.03199 0.10286 0.25008 0.78666 0.35950
Case (2) 0.02940 0.09765 0.25199 0.80667 0.37725

Table 4

The mean and standard deviation of the estimate β̂ and the average MSEs of the estimate f̂

over 200 replications with sample size n = 500

m = 2 m = 4 m = 8 m = 16

Mean(sd) of β̂1 2.003(0.056) 2.007(0.053) 1.996(0.049) 1.996(0.051)

Mean(sd) of β̂2 2.001(0.051) 2.002(0.051) 2.0006(0.048) 1.999(0.050)

Mean(sd) of β̂3 4.001(0.055) 4.002(0.050) 3.999(0.045) 3.989(0.049)

MSE of f̂ 0.2540 0.2378 0.2400 0.2483

Table 5

The total number of rejects of F test over 200 replications with sample size n = 500 at level

0.05. The numbers insides the parentheses are the mean value of F statistics

f ≡ 0 f1 f2 f3 f4
β = (0, 0, 4)′ 12 (1.1608) 13 (1.2680) 14 (1.2284) 18 (1.1414) 14 (1.2317)
β = (2, 2, 4)′ 200 (4021.3) 200 (3973.8) 200 (3891.0) 200 (2874.8) 200 (3714.5)

mean squared errors are between 2 to over 600 times as large as those of the
corresponding estimators based on the differences.

For estimating the nonparametric function f , we use a kernel method with
the Parzen’s kernel. The bandwidth was selected by cross validation, see for
example [20, 28]. For comparison, we also carried out the simulation in the case
where β = 0. The mean squared error of the estimated f is summarized in
Table 3. It can be seen that the MSEs in each column are close to each other
and hence the performance of our estimator f̂ does not depend sensitively on
the structure of X and β.

We now consider the effect of the order of the difference sequence m on the
estimation accuracy. In this study, different combinations of the function f and
the Cases (1) and (2) yield basically the same results. As an illustration of this,
we focus on Case (2) and f = f2. We compare four different values of m: 2, 4, 8,
16. The difference sequence in equation (4) was used in each case. We summarize

in Table 4 the mean and standard deviation of the estimate β̂ and the average
MSE of the estimate f̂ . By comparing the means and standard deviations in
each row we can see that the performance of the estimator does not depend
significantly on m.

Next, we consider the test of linear coefficient. In this study, we focus on case
(2) with two different sets of linear coefficients. One of them is β = (2, 2, 4)′, the
other one is β = (0, 0, 4)′. The hypothesis that will be tested is H0 : β1 = β2 = 0.
The total number of rejects (at level 0.05) over 200 runs and the mean value of
F statistics are summarized in Table 5. We also compare the F statistics with
its nominal distribution for the case β = (0, 0, 4)′ and f = f2. The empirical
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Fig 1. QQ-plot and the plot of empirical cdf of the F statistics. On the right plot, the dot

line is the plot of the true cdf.

cumulative distribution function and the quantile-quantile plot are plotted in
figure 1. It can be seen that the F statistics fit the distribution very well and F
test performs as if the nonparametric component is known.

5.2. Application to attitude data

We now apply our estimation and testing procedures to the analysis of the at-
titude data. This data set was first analyzed in [8] using multiple linear regres-
sion and variable selection. This data set was from a study of the performance
of supervisors and was collected from a survey of the clerical employees of a
large financial organization. This survey was designed to measure the overall
performance of a supervisor, as well as questions that related to specific charac-
teristic of the supervisor. The numbers give the percent proportion of favorable
responses to seven questions in each department. Seven variables, Y (over all
rating of the job being done by supervisor), X1 (raises based on performance),
X2 (handle employee complaints), X3 (does not allow special privileges), X4

(opportunity to learn new things), X5 (rate of advancing to better job), and U
(too critical to poor performances) are considered here. The goal is to under-
stand the effect of variables (X1, . . . , X5 and U) on Rating (Y ). Figure 2 plots
each independent variable against the response Y . We can see that the effect of
U on Y is not linear, while the effect of other variables are roughly linear. So
we employ the following model,

Y = a+ β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + f(U) + ǫ. (12)

Using the estimation procedure discussed in Section 3 with m = 2, the linear
component in the model (12) is estimated as 18.1127− 0.0208X1 + 0.6130X2 −
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Fig 2. Plot s of the individual explanatory variables against the response variable.

Table 6

The estimated coefficients of the linear component and the significance tests

Estimated coefficient F statistic p value
X1 -0.0208 0.0026 0.9597
X2 0.6130 3.9270 0.0600
X3 -0.1207 0.2142 0.6478
X4 0.5043 2.5216 0.1259
X5 -0.3747 1.2175 0.2813

0.1207X3 + 0.5043X4 − 0.3747X5. The F statistic and the p value for testing
each coefficient Hi0 : βi = 0 against Hi1 : βi 6= 0 are given in Table 6. The
p-values for β1, β3 and β5 are exceedingly large.

We thus perform the simultaneous F test to test the hypothesis H0 : β1 =
β3 = β5 = 0 against H1 : at least one of them is nonzero. The value of the F
statistic is 2.1577 and the p value is 0.1206. In comparison, the value of the F
statistic for the global hypothesis H0 : β1 = · · · = β5 = 0 is 18.4038 and the p
value is less than 0.0001. The results show that we fail to reject the hypothesis
H0 : β1 = β3 = β5 = 0. We can thus refine the linear component by using only
Learning (X2) and Complaints (X4) as independent variables. In this case, the
estimated linear component is 16.3467 + 0.6725X2 + 0.2068X4. The F value for
this model is 34.3635 and p value is less than 0.0001.

We can then estimate the nonparametric component of the effect of Critical
(U). For this, we run kernel estimation using the residuals of the linear fits as we
did in Section 5.1. Figure 3 shows the nonparametric fits. The left panel plots
the estimate of f under the model (12) but we ignore the linear component,
the middle panel plots the estimate of f under the model (12) with all linear

variables and the right panel plots f̂ with the variables X2 and X4 in the linear
part. We can see that the plot on the left panel is quite different from the other
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Fig 3. Kernel estimates of the nonparametric component f . The points are the residuals of

respective linear fits.

two. And the two plots on middle and right are similar since including a small
number of additional non-significant variables does not have a large effect on the
estimates of the remaining parts of the model. Moreover, we test the significance
of the nonparametric function, i.e. H0: f(u) = a+bu for some constants a, b. We
follow the test procedure described in [16]. The p-value of the likelihood ratio
test is 0.043, which shows the nonparametric function is significant. Actually,
we have significant result with p-value 0.0259 when we fit a quadratic function
to the nonparametric component.

Note that in [8], the standard multiple linear regression was used to model
the relationship between the response and the explanatory variables. The linear
model failed to detect the relation of the variable U and Y , and it concluded
that variable U did not have significant effect on Y .

6. Proofs

We shall prove Theorems 1, 3, 4, 5 and 6. The proof of Theorem 7 is similar
to that of Theorem 3 and Theorem 6, respectively. We will first prove some
technical lemmas.

6.1. Technical Lemmas

Lemma 2. Under the assumptions of Theorem 1,

√
n(Z ′Z)−1Z ′w

L−→ N(0, (1 +O(m−1))σ2Σ−1
X ).

Proof. The asymptotic normality of
√
n(Z ′Z)−1Z ′w follows from the Central

Limit Theorem and the fact that
∑m

k=1 c
2
k = O(m−1). It is known that

E(
√
n(Z ′Z)−1Z ′w) = 0 and V ar((Z ′Z)−1Z ′w|Z) = (Z ′Z)−1Z ′ΨZ(Z ′Z)−1.
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Note that with m = o(n), so 1
n (Z ′Z)

a.s.−→ E[(
∑m+1

t=1 dtXi+m+1−t)(
∑m+1

t=1 dt ×
X ′

i+m+1−t)] = ΣX . Also with m = o(n), for any k = 1, 2, . . . ,m,

1

n

n−m−1−k∑

i=1

(
m+1∑

t=1

dtXi+m+1−t

)(
m+1∑

t=1

dtX
′
i+k+m+1−t

)
a.s.−→ ckΣX .

This implies nV ar((Z ′Z)−1Z ′w|Z)
a.s.−→ σ2Σ−1

X ΣX(1+2
∑m

k=1 c
2
k)Σ−1

X = (1+

O( 1
m ))σ2Σ−1

X . So
√
n(Z ′Z)−1Z ′w

L−→ N(0, (1 +O( 1
m ))σ2Σ−1

X ).

Lemma 3. Under the assumptions of Theorem 1,

nE
[
((Z ′Z)−1Z ′δ)((Z ′Z)−1Z ′δ)′

]
= O

((m
n

)2(α∧1)
)

(ΣX)−1

Proof. Note that E(
∑n−m−1

i=1 (
∑m+1

t=1 dtX
′
i+m+1−t)δi) = 0, so E{(Z ′Z)−1Z ′δ} =

0. Now

E

[(
n−m−1∑

i=1

Ziδi

)(
n−m−1∑

i=1

Z ′
iδi

)]
=

(
n−m−1∑

i=1

δ2i − ck

n−m−2∑

j=1

δj

m∑

l=1

δj+m

)
ΣX .

When m = o(n), since f ∈ Λα(M), |δi| < M(mn )(α∧1). So

∣∣∣∣∣∣

n−m−1∑

i=1

δ2i −
1

m

n−m−2∑

j=1

δj

m∑

l=1

δj+m

∣∣∣∣∣∣
= O(n1−2(α∧1)m2(α∧1)).

Also we know that 1
nZ

′Z
a.s.−→ ΣX , therefore, as n→ ∞,

nV ar((Z ′Z)−1Z ′δ) =
nO(n1−2(α∧1)m2(α∧1))

n2
(ΣX)−1

= O

((m
n

)2(α∧1)
)

(ΣX)
−1
.

The following lemma bounds the difference between the DWT of a sampled
function and the true wavelet coefficients. See, for example, [3].

Lemma 4. Let ξJ,k = 〈f, φJ,k〉 and n = 2J . Then for some constant C > 0,

sup
V ∈Λβ(M)

n∑

k=1

(
ξJ,k − n− 1

2V

(
k

n

))2

≤ Cn−(2α∧1).

The following lemma is from [5].

Lemma 5. Let y = θ+Z, where θ is an unknown parameter and Z is a random
variable with EZ = 0. Then

E(η(y, λ) − θ)2 ≤ θ2 ∧ (4λ2) + 2E(Z2I(|Z| > λ)).
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Lemma 6. Under the assumptions of Theorem 5, V ar( 1
n

∑n−1
i=1 X(i)X

′
(i+1)) → 0

as n→ ∞. Here the variance and the limitation are both entry-wise.

Proof. First we have

V ar

(
1

n

n−1∑

i=1

X(i)X
′
(i+1)

)

=
1

n2

n−1∑

i=1

V ar(X(i)X
′
(i+1)) +

2

n2

n−2∑

i=1

Cov(X(i)X
′
(i+1), X(i+1)X

′
(i+2))

+
2

n2

∑

i+1<j

Cov(X(i)X
′
(i+1), X(j)X

′
(j+1)).

Here the covariance of two matrix means the covariance of corresponding entries.
Let ηi = h(U(i+1))−h(U(i)) and Hi = h′(U(i))h(U(i)) for i = 1, 2, . . . , n−1. Note
that when γ > 0, ηi = O(n−γ). Then for i+1 < j, Cov(X(i)X

′
(i+1), X(j)X

′
(j+1)) =

Cov(Hi, Hj) +O(n−γ). Hence,

2

n2

∑

i+1<j

Cov(X(i)X
′
(i+1), X(j)X

′
(j+1)) = V ar

(
1

n

n∑

i=1

Hi

)
+O(n−γ).

Also, it is easy to see that 1
n2

∑n−1
i=1 V ar(X(i)X

′
(i+1)) = O( 1

n ) and

2

n2

n−2∑

i=1

Cov(X(i)X
′
(i+1), X(i+1)X

′
(i+2)) = O

(
1

n

)
.

Putting these together, the lemma is proved.

Remark 12. By the same calculation, we actually can prove that for any fixed
integer k > 0, V ar( 1

n

∑n−k
i=1 X(i)X

′
(i+k)) goes to zero as n goes to infinity.

6.2. Proof of Lemma 1

It follows from Lemma 6 and the fact m = o(n) that

lim
n→∞

V ar

(
Z ′Z

n

)
= lim

n→∞
V ar

(
Z ′ΨZ

n

)
= lim

n→∞
V ar

(
Z ′δδ′Z

n

)
= 0.

So we only need to check the limit of the expectation. First note that

E(ZiZ
′
i) =

m+1∑

t=1

d2tE(V ar(X(i+t−1)|U))

+

[
m+1∑

t=1

dth(U(i+t−1))

]′[m+1∑

t=1

dth(U(i+t−1))

]
,
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E(ZiZ
′
i+j) =

m+1−j∑

t=1

dt+jdtE(V ar(X(i+j+t−1)|U))

+

[
m+1∑

t=1

dth(U(i+t−1))

]′[m+1∑

t=1

dth(U(i+j+t−1))

]
.

This implies

lim
n→∞

E

(
Z ′Z

n

)
= lim

n→∞

1

n

n−m−1∑

i=1

E(ZiZ
′
i) = lim

n→∞

1

n

n∑

i=1

E[V ar(Xi|U)] = Σ∗.

Here we use the fact that, since h(U) has γ > 0 derivatives. Similarly,
limn→∞

1
nE(Z ′ΨZ) = (1 − Σc2k)Σ∗. Finally for the third equation, let dhi =∑m+1

t=1 dth(U(i+t))

1

n
E(Z ′δδ′Z) =

1

n

n∑

i=1

E

[
V ar(X ′

(i)|U)

(
∑

t

d2t δ
2
i−t +

m+1∑

t=1

m+1∑

k=1

dtdt+kδi−tδi+k−t

)]

+
1

n

[
n∑

i=1

δiE(dhi)

]′[ n∑

i=1

δiE(dhi)

]

Since
∑

t d
2
t δ

2
i−t +

∑m+1
t=1

∑m+1
k=1 dtdt+kδi−tδi+k−t is of order n−2α for any i,

the first part of the above expression is of order n−2α. And δiE(dhi) is of order
n−α−γ for any i, so the second part of the above expression is of order n1−2α−2γ .
This implies

1

n
E(Z ′δδ′Z) = O(n−2α) +O(n1−2α−2γ).

6.3. Proofs of Theorems

Theorem 1 now follows from Lemmas 2 and 3. Note that
√
n(β̂ − β) =

√
n(Z ′Z)−1Z ′(w + δ). Lemma 3 implies

√
n(Z ′Z)−1Z ′δ

P−→ 0. This together
with Lemma 2 yield Theorem 1.

For Theorem 3, we shall only prove the convergence rate under the pointwise
squared error loss, the rate of convergence under the global mean integrated
squared error risk can be derived using a similar line of argument.

Let f̂1(u) =
∑n

i=1Ki,h(u)(f(Ui) + ǫi) and f̂2(u) =
∑n

i=1Ki,h(u)Xi(β −
β̂) + â − a, then f̂(u) = f̂1(u) + f̂2(u). In f̂1 there is no linear component.
From the standard nonparametric regression results we know that for any x0,

supf∈Λα(M)E
[
(f̂1(x0) − f(x0))2

]
≤ Cn−2α/(1+2α) for some constant C > 0.



638 L. Wang et al.

Note that
∑n

i=1K
2
i,h(u) = O( 1

nh ) = O(n−2α/(1+2α)). So

E(f̂2(x0)2) = E



(

n∑

i=1

Ki,hXi(β − β̂)

)2



≤
n∑

i=1

K2
i,hE(Xi(β − β̂))2 = O(n−2α/(1+2α))

Hence the Theorem is proved.

For Theorem 4, note that the maximum approximation error is of order
n−(2α∧1) and is negligible relative to the minimax risk in Theorem 4. Now we
shall only prove the upper bound for the integrated squared error. The case of
local pointwise error is similar. Note that

E

[∫
(f̂(x) − f(x))2dx

]
= E

∑

k

(ξ̂j0,k − ξj0,k)2 + E

J1∑

j=j0

∑

k

(θ̂j,k − θj,k)2

+
∑

j>J1

∑

k

θ2j,k. (13)

Note that for θj,k = 〈f, ψj,k〉, there exists a constant C > 0 such that for all
j ≥ j0, 1 ≤ k ≤ 2j

sup
f∈Λα(M)

|θj,k| ≤ C2−j(α+1/2). (14)

See [11]. Hence supf∈Λα(M)

∑
j>J1

∑
k θ

2
j,k ≤ C2−J12α = o(n−2α/(1+α)).

This means the third term in equation (13) is negligible. So we just need

to focus on the first two terms. We know that E(ξ̂j0,k − ξj0,k)2 ≤ 2E(τ̃2j0,k) +
2
nE(z̃2j0,k) and E(θ̂j,k − θj,k)2 ≤ 2E(τ2j,k) + 2E(ηλ(θj,k + n−1/2zj,k) − θj,k)2.
Putting them together, we have

E

[∫
(f̂(x) − f(x))2dx

]

= 2E
∑

j,k

(ηλ(θj,k + n−1/2zj,k) − θj,k)2 +
2

n
E
∑

k

(z̃2j0,k)

+2E(‖X(β̂ − β) + (â− a) · 1n‖22).

where 1n denotes the n dimensional column vector of 1. From Theorem 1 and
Theorem 5, we know that E(‖X(β̂−β)‖22) = 1

nE(XΣ−1X ′) = O( 1
n ) and E(â−

a)2 = O(n−1 ∧ n−2α). This means the third term is negligible relative to the
minimax rate. Also we know that there are only a fixed number of terms in the
sum of the second term, so this term is also negligible. From now on, we just
need to focus on the first term.

From lemma 5, E
∑

j,k(ηλ(θj,k + n−1/2zj,k) − θj,k)2 ≤ ∑
θ2j,k ∧ (4λ2) +∑ 2

nE(z2j,kI(|zj,k| ≥ n1/2λ)) , S1 + S2. By the same argument as the proof
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of Theorem 1 in [5], we can show that S2 is negligible as compared to results of
the Theorem 4.

For S1, it can be seen that when j ≥ J−log2 J
2α+1 , equation (14) yields θ2j,k ∧

(4λ2) ≤ θ2j,k ≤ C2−j(1+2α) and when j ≤ J−log2 J
2α+1 , θ2j,k ∧ (4λ2) ≤ 4λ2 ≤

C logn
n for some constant C > 0. This means S1 ≤ ∑

j≤
J−log2 J

2α+1

C2j( log n
n ) +

∑
j>

J−log2 J

2α+1

C2−2jα ≤ C( log n
n )2α/(1+2α). Hence the Theorem is proved.

Now we will prove Theorem 5. With Lemmas 1 and 2, the proof of The-
orem 5 is now straightforward. Note that

√
n(β̂ − β) =

√
n(Z ′Z)−1Z ′w +√

n(Z ′Z)−1Z ′δ. It follows from the same argument as in the proof of Lemma 2
that

√
n(Z ′Z)−1Z ′w ∼ N(0, n(Z ′Z)−1Z ′ΦZ(Z ′Z)−1). The first two equalities

of Lemma 1 yields

lim
n→∞

n(Z ′Z)−1Z ′ΦZ(Z ′Z)−1) = {Σ∗}−1

and the third equality of Lemma 1 shows that, when α+γ > 1/2,
√
n(Z ′Z)−1Z ′δ

is small and negligible. Theorem 5 now follows.

Next we will prove Theorem 6. Let L be a (n−m) × n matrix given by

 Li,j =

{
dj−i+1 for 0 ≤ j − i ≤ m
0 otherwise

. (15)

Moreover, let J be another (n − m) × n matrix given by Ji,i = 1 for i =
1, 2, . . . , n − m and 0 otherwise. Then w = Lǫ = Jǫ + (L − J)ǫ = w1 + w2

where w1 = Jǫ and w2 = (L − J)ǫ. We can see that w1 ∼ N(0, σ2In−m) and
w2 ∼ N(0, σ2(L− J)(L− J)′). Note that d21 = 1−O(m−1), hence each entry of
the covariance matrix of w2 is of order m−1. So w2 goes to 0 in probability as
n goes to infinity and is negligible as compared to w1.

We know that β̂ = β+(Z ′Z)−1Z ′w = β+(Z ′Z)−1Z ′w1+(Z ′Z)−1Z ′w2. Hence

under H0, Cβ̂ = C(Z ′Z)−1Z ′w1 + C(Z ′Z)−1Z ′w2, where C(Z ′Z)−1Z ′w1 ∼
N(0, σ2C(Z ′Z)−1C′).

On the other hand, w′Hw = w′
1Hw1 + 2w′

1Hw2 +w′
2Hw2. It is easy to check

that H is a projection of rank n−m−p, i.e., H2 = H and rank(H) = n−m−p.
Hence w′

1Hw1 = (Hw1)′(Hw1) follows a χ2 distribution with n−m−p degrees of
freedom. Now we know that 1

σ2w
′
1Z(Z ′Z)−1C′(C(Z ′Z)−1C′)−1C(Z ′Z)−1Z ′w1

follows χ2(r) and w′
1Hw1 follows χ2(n−m− p) and they are independent. This

means β̂′C′(C(Z′Z)−1C′)−1Cβ̂/r
σ̂2 asymptotically follows F (r, n−m−p) distribution.

By the same argument as in the proof of Theorem 1, we can prove that the
asymptotic power of this test (at local alternatives) is the same as the usual F
test when f is not present in the model (1).
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